organic compounds

4025 independent reflections

2961 reflections with $I > 2\sigma(I)$

 $0.30 \times 0.20 \times 0.15 \text{ mm}$

 $R_{\rm int} = 0.076$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-Benzoyl-*r*-2,c-6-di-2-furyl-*t*-3-methylpiperidin-4-one

A. Thiruvalluvar,^a* S. Balamurugan,^a A. Manimekalai,^b K. Selvaraju^b and T. Maruthavanan^b

^aDepartment of Physics, Rajah Seríoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, and ^bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India Correspondence e-mail: athiru@vsnl.net

Received 3 May 2007; accepted 7 May 2007

Key indicators: single-crystal X-ray study; T = 160 K; mean σ (C–C) = 0.003 Å; R factor = 0.056; wR factor = 0.156; data-to-parameter ratio = 17.1.

In the title molecule, $C_{21}H_{19}NO_4$, the piperidine ring adopts a chair conformation. The benzoyl group has a bisectional orientation. The planar furyl rings and the methyl group each have an axial orientation. The structure is stabilized by interand intramolecular $C-H\cdots O$ hydrogen bonds.

Related literature

For related literature, see: Balamurugan *et al.* (2006, 2007); Kumar & Pillay (1993).

Experimental

Crystal data

 $\begin{array}{l} C_{21}H_{19}NO_4\\ M_r = 349.37\\ \text{Monoclinic, } C2/c\\ a = 20.5162 \ (5) \text{ Å}\\ b = 8.9727 \ (3) \text{ Å} \end{array}$

c = 19.0466 (6) Å β = 91.395 (2)° V = 3505.17 (18) Å³ Z = 8 Mo Kα radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 160 (1) K

Data collection

Nonius KappaCCD area-detector diffractometer Absorption correction: none 37792 measured reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.056 & 235 \text{ parameters} \\ wR(F^2) &= 0.156 & H\text{-atom parameters constrained} \\ S &= 1.06 & \Delta\rho_{\text{max}} = 0.25 \text{ e } \text{ Å}^{-3} \\ 4025 \text{ reflections} & \Delta\rho_{\text{min}} = -0.24 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C2−H2···O11	0.98	2.25	2.730 (2)	109
$C5-H5B\cdots O11^{i}$	0.97	2.58	3.508 (2)	161
C24−H24···O4 ⁱⁱ	0.93	2.52	3.452 (3)	176
C116−H116···O62	0.93	2.55	3.305 (2)	139

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y, -z.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2003).

The data collection was carried out by Dr A. Linden of the Institute of Organic Chemistry at the University of Zurich; his help is gratefully acknowledged by AT.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2288).

References

- Balamurugan, S., Thiruvalluvar, A., Manimekalai, A., Selvaraju, K. & Maruthavanan, T. (2006). Acta Cryst. E62, o2005–o2006.
- Balamurugan, S., Thiruvalluvar, A., Manimekalai, A., Selvaraju, K. & Maruthavanan, T. (2007). Acta Cryst. E63, o789–o791.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kumar, R. K. & Pillay, M. K. (1993). *Indian J. Heterocycl. Chem.* **3**, 179–184. Nonius (2000). *COLLECT*. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, o2909 [doi:10.1107/S1600536807022398]

N-Benzoyl-r-2,c-6-di-2-furyl-t-3-methylpiperidin-4-one

A. Thiruvalluvar, S. Balamurugan, A. Manimekalai, K. Selvaraju and T. Maruthavanan

Comment

The title compound, (I), has been analysed as part of our crystallographic studies on substitued piperidines (Balamurugan *et al.*, 2006; 2007). The present X-ray diffraction study was undertaken to determine how the conformation of the system is affected by the substitution of a benzoyl group at the first position (N), furyl rings at 2 and 6 and a methyl group at 3 of the piperidin-4-one.

In the title molecule, (I), the piperidine ring adopts a chair conformation. The furyl rings at positons 2,6, and the methyl group at position 3 have an axial orientation. The benzoyl group at N has a bisectional orientation. The dihedral angle between the two planar furyl rings is $25.6 (1)^{\circ}$. The phenyl ring makes dihedral angles of $55.2 (1)^{\circ}$ and $63.6 (1)^{\circ}$ between the furyl ring at 2 and 6 respectively. In the solid state, the molecules are linked by inter- and intramolecular C–H…O hydrogen bonds.

Experimental

The title compound was prepared by following the general procedure reported by Kumar & Pillay (1993). A mixture of t(3)-methyl-r(2),c(6)-(2'-furyl)piperidin-4-one (2.45 g, 0.01 mol) benzoylchoride (1.16 ml, 0.01 mol) and triethylamine (3 ml, 0.03 mol) in benzene were refluxed for 8–10 h. The precipitated ammonium salt was filtered off and the solvent was washed with dilute HCl (2 N) followed by water and then removed at low pressure. The solid mass filtered off, dried and recrystallized from petroleum-ether (333–353 K). The yield of the isolated product was 2.44 g (70%).

Refinement

All the H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.93–0.98 Å and $U_{iso}(H) = 1.2-1.5U_{eq}(\text{parent atom})$.

Figures

Figure 1 View of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

N-Benzoyl-r-2,c-6-di-2-furyl-t-3-methylpiperidin-4-one

Crystal data	
C ₂₁ H ₁₉ NO ₄	$F_{000} = 1472$
$M_r = 349.37$	$D_{\rm x} = 1.324 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Melting point: 427 K
Hall symbol: -C 2yc	Mo K α radiation $\lambda = 0.71073$ Å
a = 20.5162 (5) Å	Cell parameters from 4257 reflections
b = 8.9727 (3) Å	$\theta = 2.0 - 27.5^{\circ}$
c = 19.0466 (6) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 91.395 \ (2)^{\circ}$	T = 160 (1) K
$V = 3505.17 (18) \text{ Å}^3$	Tiny_blocks, colourless
Z = 8	$0.30\times0.20\times0.15~mm$

Data collection

Nonius KappaCCD area-detector diffractometer	4025 independent reflections
Radiation source: Nonius FR590 sealed tube generat- or	2961 reflections with $I > 2\sigma(I)$
Monochromator: horizontally mounted graphite crystal	$R_{\rm int} = 0.076$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 160(1) K	$\theta_{\min} = 2.1^{\circ}$
ϕ and ω scans with κ offsets	$h = -26 \rightarrow 26$
Absorption correction: none	$k = -11 \rightarrow 11$
37792 measured reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained
$wR(F^2) = 0.156$	$w = 1/[\sigma^2(F_o^2) + (0.0737P)^2 + 3.1099P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$

4025 reflections

235 parameters

 $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. Solvent used: Mixture of Petroleum-ether Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.995 (2) Frames collected: 456 Seconds exposure per frame: 41 Degrees rotation per frame: 1.3 Crystal-Detector distance (mm): 30.0

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotron	ic or	anivalant	isotro	nic dis	nlacomont	naramators	1 82)
raciionai	aiomic	coorainales	unu	isourop		equivaieni	isoiroj	bic uis	placement	purumeters	(А,	1

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O4	0.44450 (7)	0.31744 (17)	0.09889 (9)	0.0463 (5)
011	0.26740 (7)	-0.08170 (18)	0.25095 (7)	0.0433 (5)
O22	0.36694 (6)	-0.23026 (15)	0.10441 (7)	0.0319 (4)
O62	0.26918 (7)	-0.03856 (17)	0.00725 (7)	0.0408 (5)
N1	0.30183 (7)	0.03966 (16)	0.15425 (7)	0.0218 (4)
C2	0.37023 (8)	-0.0006 (2)	0.17102 (9)	0.0236 (5)
C3	0.41222 (9)	0.1392 (2)	0.18472 (10)	0.0307 (6)
C4	0.40042 (9)	0.2555 (2)	0.12821 (11)	0.0315 (6)
C5	0.32971 (9)	0.2907 (2)	0.11244 (11)	0.0321 (6)
C6	0.28968 (8)	0.1487 (2)	0.09787 (9)	0.0245 (5)
C11	0.25465 (8)	-0.0072 (2)	0.19834 (9)	0.0260 (5)
C21	0.39848 (8)	-0.09842 (19)	0.11577 (9)	0.0232 (5)
C23	0.40031 (10)	-0.3035 (2)	0.05332 (10)	0.0347 (6)
C24	0.45082 (10)	-0.2228 (2)	0.03307 (11)	0.0367 (6)
C25	0.44997 (10)	-0.0897 (2)	0.07390 (11)	0.0363 (6)
C31	0.39855 (11)	0.2062 (3)	0.25692 (12)	0.0440 (7)
C61	0.30274 (9)	0.0875 (2)	0.02632 (9)	0.0292 (6)
C63	0.28507 (13)	-0.0700 (3)	-0.06067 (11)	0.0532 (9)
C64	0.32643 (12)	0.0321 (3)	-0.08387 (11)	0.0551 (9)
C65	0.33858 (11)	0.1355 (3)	-0.02753 (11)	0.0422 (7)
C111	0.18492 (8)	0.0335 (2)	0.18188 (9)	0.0250 (5)
C112	0.15183 (9)	0.1149 (2)	0.23184 (10)	0.0315 (6)
C113	0.08644 (9)	0.1474 (3)	0.22100 (11)	0.0376 (7)
C114	0.05335 (9)	0.0957 (3)	0.16204 (11)	0.0391 (7)
C115	0.08574 (9)	0.0133 (3)	0.11304 (11)	0.0386 (7)
C116	0.15167 (9)	-0.0167 (2)	0.12244 (10)	0.0328 (6)

H2	0.37034	-0.05811	0.21475	0.0283*
Н3	0.45821	0.10989	0.18408	0.0368*
H5A	0.32655	0.35584	0.07184	0.0385*
H5B	0.31167	0.34319	0.15204	0.0385*
H6	0.24347	0.17604	0.09874	0.0294*
H23	0.38914	-0.39661	0.03533	0.0416*
H24	0.48070	-0.24809	-0.00089	0.0440*
H25	0.47959	-0.01144	0.07188	0.0435*
H31A	0.40609	0.13207	0.29256	0.0660*
H31B	0.35402	0.23878	0.25798	0.0660*
H31C	0.42698	0.28954	0.26544	0.0660*
H63	0.26932	-0.15067	-0.08665	0.0639*
H64	0.34415	0.03583	-0.12831	0.0661*
H65	0.36565	0.21860	-0.02810	0.0506*
H112	0.17357	0.14731	0.27244	0.0377*
H113	0.06465	0.20459	0.25371	0.0450*
H114	0.00922	0.11643	0.15544	0.0469*
H115	0.06337	-0.02233	0.07345	0.0463*
H116	0.17359	-0.07083	0.08869	0.0394*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O4	0.0396 (8)	0.0398 (9)	0.0606 (10)	-0.0118 (7)	0.0212 (7)	-0.0038 (7)
011	0.0345 (8)	0.0630 (10)	0.0327 (8)	0.0069 (7)	0.0083 (6)	0.0233 (7)
O22	0.0355 (7)	0.0296 (7)	0.0311 (7)	-0.0072 (6)	0.0087 (6)	-0.0048 (5)
O62	0.0544 (9)	0.0388 (8)	0.0291 (8)	0.0037 (7)	-0.0012 (6)	-0.0043 (6)
N1	0.0218 (7)	0.0230 (8)	0.0206 (7)	0.0012 (6)	0.0033 (5)	0.0028 (6)
C2	0.0215 (8)	0.0275 (9)	0.0219 (9)	0.0002 (7)	0.0015 (7)	0.0004 (7)
C3	0.0248 (9)	0.0326 (11)	0.0347 (10)	-0.0013 (8)	0.0008 (8)	-0.0085 (8)
C4	0.0309 (10)	0.0242 (10)	0.0399 (11)	-0.0056 (8)	0.0120 (8)	-0.0107 (8)
C5	0.0363 (10)	0.0228 (10)	0.0376 (11)	0.0012 (8)	0.0115 (8)	0.0021 (8)
C6	0.0245 (8)	0.0260 (9)	0.0231 (9)	0.0028 (7)	0.0042 (7)	0.0054 (7)
C11	0.0271 (9)	0.0293 (10)	0.0219 (9)	-0.0009 (7)	0.0045 (7)	0.0023 (7)
C21	0.0233 (8)	0.0209 (9)	0.0255 (9)	0.0012 (7)	0.0002 (7)	0.0009 (7)
C23	0.0458 (12)	0.0277 (10)	0.0308 (10)	0.0018 (9)	0.0050 (9)	-0.0080 (8)
C24	0.0396 (11)	0.0325 (11)	0.0386 (11)	0.0072 (9)	0.0154 (9)	-0.0035 (9)
C25	0.0341 (10)	0.0264 (10)	0.0491 (12)	-0.0026 (8)	0.0173 (9)	-0.0025 (9)
C31	0.0426 (12)	0.0492 (13)	0.0402 (12)	-0.0045 (10)	-0.0004 (9)	-0.0159 (10)
C61	0.0313 (10)	0.0318 (10)	0.0245 (9)	0.0081 (8)	0.0040 (7)	0.0056 (7)
C63	0.0726 (17)	0.0608 (16)	0.0260 (11)	0.0274 (14)	-0.0054 (11)	-0.0113 (11)
C64	0.0580 (15)	0.086 (2)	0.0217 (11)	0.0368 (14)	0.0086 (10)	0.0035 (12)
C65	0.0410 (11)	0.0548 (14)	0.0312 (11)	0.0118 (10)	0.0122 (9)	0.0132 (10)
C111	0.0239 (9)	0.0273 (9)	0.0241 (9)	-0.0032 (7)	0.0050 (7)	0.0029 (7)
C112	0.0260 (9)	0.0361 (11)	0.0324 (10)	-0.0051 (8)	0.0040 (8)	-0.0076 (8)
C113	0.0273 (10)	0.0419 (12)	0.0438 (12)	-0.0024 (8)	0.0082 (8)	-0.0115 (10)
C114	0.0228 (9)	0.0523 (13)	0.0424 (12)	-0.0009 (9)	0.0032 (8)	-0.0035 (10)
C115	0.0309 (10)	0.0545 (14)	0.0303 (11)	-0.0062 (9)	-0.0022 (8)	-0.0063 (9)

sup-5

supplementary materials

C116	0.0315 (10)	0.0404 (11)	0.0268 (10)	-0.0010 (8)	0.0059 (8)	-0.0043 (8)
Geometric par	ameters (Å, °)					
O4—C4		1.210(2)	C3—	H3	0.9	800
O11—C11		1.227 (2)	C5—]	H5A	0.9	700
O22—C21		1.363 (2)	C5—1	H5B	0.9	700
O22—C23		1.371 (2)	C6—1	Н6	0.9	800
O62—C61		1.369 (2)	C111-	C112	1.3	90 (3)
O62—C63		1.371 (3)	C111-	—C116	1.3	83 (3)
N1—C2		1.477 (2)	C112-	—C113	1.3	84 (3)
N1—C6		1.470 (2)	C113-	C114	1.3	78 (3)
N1-C11		1.363 (2)	C114-	—C115	1.3	75 (3)
C2—C3		1.540 (3)	C115-	—C116	1.3	87 (3)
C2—C21		1.498 (2)	C23–	-H23	0.9	300
C3—C4		1.514 (3)	C24—	-H24	0.9	300
C3—C31		1.533 (3)	C25–	-H25	0.9	300
C4—C5		1.508 (3)	C31-	-H31A	0.9	500
C5—C6		1.538 (3)	C31-	-H31B	0.9	500
C6—C61		1.499 (2)	C31-	-H3IC	0.9	200
C11 - C111		1.302(2)	C63-	-поз на	0.9	300
$C_{21} = C_{23}$		1.341(3) 1 329(3)	C65-	-H65	0.9	300
$C_{23} C_{24}$		1.329(3) 1 426(3)	C112-	H112	0.9	300
C61—C65		1.347 (3)	C112	-H113	0.9	300
C63—C64		1.332 (4)	C114-	—H114	0.9	300
C64—C65		1.436 (3)	C115-	—H115	0.9	300
C2—H2		0.9800	C116-	—H116	0.9	300
04…C115 ⁱ		3.394 (3)	C65…	·H6 ^v	2.7	200
O11···C112 ⁱⁱ		3.200 (2)	C111·	···H31B ⁱⁱ	3.0	000
O11···C64 ⁱⁱⁱ		3.373 (3)	C111·	…Н6	2.3	800
O22···O62		3.1977 (19)	C113-	···H2 ^{vii}	3.0	400
O22…N1		2.9348 (19)	C114-	···H31C ⁱⁱ	3.1	000
O62…C116		3.305 (2)	C114-	···H113 ^{xii}	3.1	000
O62···O22		3.1977 (19)	C115-	···H65 ^v	3.0	800
O62…C21		3.366 (2)	C115-	···H23 ^{xi}	3.0	700
O62…N1		2.9477 (19)	C115-	···H31C ⁱⁱ	3.0	800
O4…H115 ⁱ		2.8800	C116-	…Н6	2.6	000
O4…H24 ^{iv}		2.5200	Н2…С	D11	2.2	500
O11…H2		2.2500	Н2…Н	H31A	2.3	700
O11…H5B ⁱⁱ		2.5800	Н2…С	C113 ⁱⁱ	3.04	400
O11…H64 ⁱⁱⁱ		2.7900	Н2…Н	H113 ⁱⁱ	2.5	800
O11…H112		2.8500	Н3…С	C25	2.7	600
011…H112 ⁱⁱ		2.7600	НЗ…Н	125	2.4	500
O22…H112 ⁱⁱ		2.7400	H5A·	··C65	2.7	500
O62…H116		2.5500	H5A·	··H65	2.4	200

N1…O22	2.9348 (19)	H5A···C63 ^v	2.9900
N1…O62	2.9477 (19)	H5B…C31	2.9200
N1…H31B	2.8500	H5B…H31B	2.3700
C4…C25	3.428 (3)	H5B…O11 ^{vii}	2.5800
C4…C65	3.374 (3)	H6…C111	2.3800
C5…C63 ^v	3.562 (3)	H6…C116	2.6000
C6…C116	3.241 (2)	H6···C64 ^v	3.0000
C6…C65 ^v	3.507 (3)	H6…C65 ^v	2.7200
C21…C61	3.063 (2)	H23…C115 ^{xi}	3.0700
C21…O62	3.366 (2)	H23…H115 ^{xi}	2.4200
C24…C114 ^{vi}	3.586 (3)	H24····O4 ^{iv}	2.5200
C25…C65	3.581 (3)	H25…C3	2.9200
C25…C4	3.428 (3)	H25…H3	2.4500
C25…C61	3.513 (3)	H31A…H2	2.3700
C31···C116 ^{vii}	3.555 (3)	H31A…H64 ⁱⁱⁱ	2.5000
C61…C21	3.063 (2)	H31B…N1	2.8500
C61…C25	3.513 (3)	H31B…C5	2.8400
C63…C5 ^v	3.562 (3)	H31B…H5B	2.3700
C64…O11 ^{viii}	3.373 (3)	H31B…C111 ^{vii}	3.0000
C65…C4	3.374 (3)	H31C…C114 ^{vii}	3.1000
C65…C6 ^v	3.507 (3)	H31C…C115 ^{vii}	3.0800
C65…C25	3.581 (3)	H64…O11 ^{viii}	2.7900
C3…H25	2.9200	H64···H31A ^{viii}	2.5000
C4…H65	3.0600	H65…C4	3.0600
C5…H31B	2.8400	H65…C5	2.8700
С5…Н65	2.8700	H65…H5A	2.4200
C6…H116	3.0900	H65…C115 ^v	3.0800
C112···O11 ^{vii}	3.200 (2)	H112…O11	2.8500
C114C24 ^{ix}	3.586 (3)	H112···O11 ^{vii}	2.7600
C115O4 ^x	3.394 (3)	H112····O22 ^{vii}	2.7400
C116…O62	3.305 (2)	H113····C114 ^{xii}	3.1000
C116…C6	3.241 (2)	H113····H114 ^{xii}	2.4600
C116…C31 ⁱⁱ	3.555 (3)	H113····H2 ^{vii}	2.5800
C23…H115 ^{xi}	2.9900	H114…H113 ^{xii}	2.4600
C23…H114 ^{vi}	3.0100	H114C23 ^{ix}	3.0100
C24…H115 ^{xi}	3.0700	H114C24 ^{ix}	2.9700
C24…H114 ^{vi}	2.9700	H115…O4 ^x	2.8800
С25…Н3	2.7600	H115C23 ^{xi}	2.9900
С31…Н5В	2.9200	H115C24 ^{xi}	3.0700
C63···H5A ^v	2.9900	H115…H23 ^{xi}	2.4200
C64…H6 ^v	3.0000	H116…O62	2.5500
С65…Н5А	2.7500	H116…C6	3.0900
C21—O22—C23	106.58 (14)	C6—C5—H5B	109.00

C61—O62—C63	106.91 (16)	Н5А—С5—Н5В	108.00
C2—N1—C6	117.67 (13)	N1—C6—H6	108.00
C2—N1—C11	118.47 (14)	С5—С6—Н6	108.00
C6—N1—C11	123.03 (14)	С61—С6—Н6	108.00
N1—C2—C3	111.23 (14)	C112—C111—C116	119.49 (16)
N1—C2—C21	111.92 (14)	C11—C111—C112	117.61 (15)
C3—C2—C21	111.83 (14)	C11—C111—C116	122.68 (16)
C2—C3—C4	111.20 (15)	C111—C112—C113	119.78 (18)
C2—C3—C31	110.95 (16)	C112—C113—C114	120.5 (2)
C4—C3—C31	109.74 (16)	C113—C114—C115	119.84 (18)
O4—C4—C3	122.44 (17)	C114—C115—C116	120.20 (19)
O4—C4—C5	122.57 (18)	C111—C116—C115	120.18 (18)
C3—C4—C5	114.98 (16)	O22—C23—H23	125.00
C4—C5—C6	111.69 (15)	С24—С23—Н23	125.00
N1—C6—C5	109.85 (14)	C23—C24—H24	127.00
N1—C6—C61	112.92 (14)	C25—C24—H24	127.00
C5—C6—C61	111.17 (15)	C21—C25—H25	126.00
O11—C11—N1	122.04 (16)	С24—С25—Н25	126.00
O11—C11—C111	119.06 (15)	C3—C31—H31A	109.00
N1-C11-C111	118.90 (15)	С3—С31—Н31В	109.00
O22—C21—C2	115.45 (14)	С3—С31—Н31С	109.00
O22—C21—C25	109.51 (15)	H31A—C31—H31B	109.00
C2—C21—C25	135.02 (16)	H31A—C31—H31C	109.00
O22—C23—C24	110.56 (16)	H31B—C31—H31C	110.00
C23—C24—C25	106.15 (18)	O62—C63—H63	125.00
C21—C25—C24	107.20 (17)	С64—С63—Н63	125.00
O62—C61—C6	116.36 (15)	С63—С64—Н64	126.00
O62—C61—C65	110.03 (17)	С65—С64—Н64	126.00
C6—C61—C65	133.46 (18)	С61—С65—Н65	127.00
O62—C63—C64	109.9 (2)	С64—С65—Н65	127.00
C63—C64—C65	107.3 (2)	C111—C112—H112	120.00
C61—C65—C64	105.9 (2)	C113—C112—H112	120.00
С21—С2—Н2	107.00	C112—C113—H113	120.00
N1—C2—H2	107.00	C114—C113—H113	120.00
С3—С2—Н2	107.00	C113—C114—H114	120.00
С31—С3—Н3	108.00	C115—C114—H114	120.00
С2—С3—Н3	108.00	C114—C115—H115	120.00
С4—С3—Н3	108.00	C116—C115—H115	120.00
C4—C5—H5B	109.00	C111—C116—H116	120.00
C4—C5—H5A	109.00	C115—C116—H116	120.00
С6—С5—Н5А	109.00		
C23—O22—C21—C2	-179.24 (15)	C3—C2—C21—C25	-3.2 (3)
C23—O22—C21—C25	-0.5 (2)	C2—C3—C4—O4	-131.7 (2)
C21—O22—C23—C24	0.2 (2)	C2—C3—C4—C5	49.6 (2)
C63—O62—C61—C6	176.40 (17)	C31—C3—C4—O4	105.2 (2)
C63—O62—C61—C65	0.3 (2)	C31—C3—C4—C5	-73.5 (2)
C61—O62—C63—C64	-0.5 (3)	O4—C4—C5—C6	129.7 (2)
C6—N1—C2—C3	52.52 (19)	C3—C4—C5—C6	-51.6 (2)
C6—N1—C2—C21	-73.38 (19)	C4—C5—C6—N1	50.5 (2)

C11—N1—C2—C3	-117.37 (17)	C4—C5—C6—C61	-75.2 (2)	
C11—N1—C2—C21	116.73 (17)	N1—C6—C61—O62	56.6 (2)	
C2—N1—C6—C5	-53.57 (19)	N1-C6-C61-C65	-128.4 (2)	
C2—N1—C6—C61	71.13 (19)	C5—C6—C61—O62	-179.38 (15)	
C11—N1—C6—C5	115.82 (17)	C5-C6-C61-C65	-4.4 (3)	
C11—N1—C6—C61	-119.47 (17)	O11—C11—C111—C112	58.9 (2)	
C2-N1-C11-011	-0.3 (3)	O11—C11—C111—C116	-115.8 (2)	
C2-N1-C11-C111	179.83 (15)	N1-C11-C111-C112	-121.19 (18)	
C6-N1-C11-O11	-169.58 (17)	N1-C11-C111-C116	64.1 (2)	
C6-N1-C11-C111	10.5 (2)	O22—C21—C25—C24	0.7 (2)	
N1—C2—C3—C4	-47.42 (19)	C2-C21-C25-C24	179.02 (19)	
N1-C2-C3-C31	75.02 (19)	O22—C23—C24—C25	0.2 (2)	
C21—C2—C3—C4	78.53 (18)	C23—C24—C25—C21	-0.5 (2)	
C21—C2—C3—C31	-159.03 (16)	O62—C61—C65—C64	0.0 (3)	
N1—C2—C21—O22	-59.31 (19)	C6—C61—C65—C64	-175.2 (2)	
N1—C2—C21—C25	122.4 (2)	O62—C63—C64—C65	0.5 (3)	
C3—C2—C21—O22	175.12 (14)	C63—C64—C65—C61	-0.3 (3)	

Symmetry codes: (i) x+1/2, y+1/2, z; (ii) -x+1/2, y-1/2, -z+1/2; (iii) x, -y, z+1/2; (iv) -x+1, -y, -z; (v) -x+1/2, -y+1/2, -z; (vi) x+1/2, y-1/2, z; (vii) -x+1/2, y+1/2, -z+1/2; (viii) x, -y, z-1/2; (ix) x-1/2, y+1/2, z; (x) x-1/2, y-1/2, z; (xi) -x+1/2, -y-1/2, -z; (xii) -x, y, -z+1/2.

Hydrogen-bond geometry $(Å, \circ)$

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C2—H2…O11	0.98	2.25	2.730 (2)	109
C5—H5B····O11 ^{vii}	0.97	2.58	3.508 (2)	161
C24—H24····O4 ^{iv}	0.93	2.52	3.452 (3)	176
C116—H116…O62	0.93	2.55	3.305 (2)	139
$C_{\text{entropy}} = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left($	(in)			

Symmetry codes: (vii) -x+1/2, y+1/2, -z+1/2; (iv) -x+1, -y, -z.

